Exam Seat No:_____

C.U.SHAH UNIVERSITY Summer Examination-2016

Subject Name: Functional Analysis-I

Subject Code:5SC	CO2MTC3	Branch:M.Sc.(Mathematics)	
Semester: 2	Date :09/05/2016	Time : 10:30 To 1:30	Marks : 70

Instructions:

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

SECTION – I

Q-1		Attempt the Following questions	(07)
	a. b. c. d. e.	Define: inner product space. State parallelogram law for inner product space. Define: orthonormal set State Schwarz's inequality. State Bessel's inequality.	(01) (01) (01) (02) (02)
Q-2	a)	Attempt all questions Let $<$, $>$ be an inner product on a linear space X and $T: X \to X$ be a linear be a linear one to one map. Let $< x, y >_T = < T(x), T(y) >, x, y \in X$ Then prove that $<$, $>_T$ is an inner product space.	(14) (05)
	b)	Let X be an inner product space. For $x \in X$, define $ x = \sqrt{\langle x, x \rangle}$. Then prove that $ $ is an norm on X.	(05)
	c)	Let <i>X</i> be an inner product space and $\{x_n\}, \{y_n\}$ be sequence in <i>X</i> such that $ x_n - x \to 0$, $ y_n - y \to 0$ then prove that $\langle x_n, y_n \rangle \to \langle x, y \rangle$.	(04)
		OR	
Q-2		Attempt all questions	(14)
	a)	Let $X = K^n$, define $\langle x, y \rangle = \sum_{j=1}^n x(j) \overline{y(j)} \forall x, y \in l^2$ then prove that (K^n, \langle, \rangle) is an inner product space.	(05)
	b)	State and prove Polarization identity for inner product space.	(05)

c) State and prove Pythagoras theorem for inner product space. (04)

Page 1 || 3

Q-3 Attempt all questions

- a) Let X be an inner product space. Let $\{x_1, x_2, \dots, x_n\}$ be a linearly independent subset of X. Define $y_1 = x_1$ with $u_1 = \frac{y_1}{\|y_1\|}$, for $n = 2, 3, \dots, y_n = x_n < x_n, u_1 > u_1 < x_n, u_2 > u_2 \dots < x_n, u_{n-1} > u_{n-1}$ with $u_n = \frac{y_n}{\|y_n\|}$ then prove that $\{u_1, u_2, \dots, u_n\}$ is an orthonormal set in X and for $n = 1, 2, \dots$ span $\{u_1, u_2, \dots, u_n\} = \text{span } \{x_1, x_2, \dots, x_n\}$
- **b)** If *H* be Hilbert space, $\{\alpha_n\}$ be a sequence in *K* and $\{u_1, u_2, ...\}$ be an orthonormal (04) subset of *H*. Then prove that $\sum_{n=1}^{\infty} \alpha_n u_n$ converges in *H* if and only if $\sum_{n=1}^{\infty} |\alpha_n|^2 < \infty$.

(14)

(06)

c) Let X be an inner product space and E be an orthonormal subset of X. Then for (04) each $x \in X$ prove that $E_x = \{u \in E : \langle x, u \rangle \neq 0\}$ is countable.

OR

Q-3	a)	Let <i>H</i> be a Hilbert space and $E \subset H$ be orthonormal set. Then prove that following are equivalent	(06)
		(i) Fis orthonormal basis	
		(i) Ets orthonormal basis. (ii) For each $x \in H$ $x = \sum_{i=1}^{\infty} \langle x_i u_i \rangle \langle u_i u_i \rangle$ where $E = \{u_i, u_i\}$	
		(ii) I of each $x \in H, x = \sum_{n=1}^{\infty} \langle x, u_n \rangle \langle u_n, where L_x \rangle = \{u_1, u_2, \dots\}$ (iii) I (F) is dense in H	
		(iii) $E(E)$ is define in H .	
	b)	(iv) For $x \in H$ and x is perpendicular to each element of E then $x = 0$.	(04)
	D)	isomorphic to $(K^n, \ \ _2)$.	(04)
	c)	Let <i>H</i> be separable Hilbert space then prove that it has countable orthonormal	(04)
		basis.	
		SECTION – II	
Q-4		Attempt the Following questions	(07)
			(0.0)
	a.	Write an orthonormal basis for l^2 .	(02)
	b.	Let <i>H</i> be a Hilbert space and $A \in BL(H)$ then prove that $\lambda \in \sigma(A)$ if and only if	(02)
		$\lambda \in \sigma(A^*)$	
	c.	If $A \in BL(H)$ is bounded below then $R(A^*) = H$. True or False.	(01)
	d.	Define: Self adjoint operator	(01)
	e.	Define: Numerical range of a bounded linear operator.	(01)
0-5		Attempt all questions	(14)
C	a)	Let H be a Hilbert space and Y be a closed subspace of H. Then prove that	(08)
	,	$H = Y \oplus Y^{\perp}$, where $Y^{\perp} = \{x \in H : \langle x, y \rangle = 0, \forall y \in Y\}$ and $Y^{\perp \perp} = Y$. Also	
		justify that completeness is essential in it.	
	b)	State and prove unique Hahn – Banach extension theorem.	(06)
	,	OR	
Q-5	a)	State and prove Rietz – representation theorem for Hilbert space. Also justify that	(08)
	• •	completeness is essential in it.	
	D)	Let <i>H</i> be a Hilbert space. Define $J_y: H \to K$ for $y \in H$ by $J_y(f) = f(y), f \in H$	(06)
		then prove that j_y is continuous linear functional on H' and $ j_y = y $. Also if	

Page 2 || 3

 $J: H \to H''$ by $J(y) = j_y$ then prove that J is an on to isometry isomorphism

O-6		Attempt all questions	(14)
	a)	Let A, B be two compact operators on H. Then prove that $A + B$, AC and CA are compact operators $\forall C \in BL(H)$.	(06)
	b)	Let $K = C$ and $A \in BL(H)$. Then prove that there are unique self adjoint operators B and C on H such that $A = B + iC$. Further A is normal if and only if $BC = CB$.	(04)
	c)	Let $A \in BL(H)$ be normal operator then prove that $\sigma(A) = \sigma_a(A)$ OR	(04)
O-6		Attempt all Questions	
C	a)	Let H be a Hilbert space and $A \in BL(H)$ then prove that	(06)
		(i) $\sigma_e(A) \subset W(A)$.	

(ii)
$$\sigma(A) \subset \overline{W(A)}$$
.

b) In usual notation prove that
$$\sigma_e(A) \subset \sigma_a(A) \subset \sigma(A)$$
. (04)

c) Let A and B be normal. If A commutes with B^* and B commutes with A^* then (04) prove that A + B and AB are normal.

